Sliders_McGee/Core/Src/main.c

419 lines
12 KiB
C
Raw Normal View History

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "i2c.h"
#include "tim.h"
#include "usart.h"
#include "usb_device.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdbool.h>
#include "usbd_cdc_if.h"
#include "version.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
typedef struct EMA_Filter
{
float filtered_sample;
uint32_t last_sample;
float coeff;
} EMA_Filter_t;
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define NUM_SLIDERS (6u)
#define SLIDER_COEFF 0.30f
#define MAX_PWM_VALUE (10000u)
2024-07-12 18:11:48 -05:00
#define PWM_LIMIT (0.5f)
#define BTN_POLL_TIME (100u)
#define UART_LOOP_TIME (1000u)
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
uint16_t m_adc1[4];
uint16_t m_adc2[2];
bool m_adc1_filtered_ready = false;
bool m_adc2_filtered_ready = false;
EMA_Filter_t m_slider_filters[NUM_SLIDERS];
float m_sliders[NUM_SLIDERS];
uint8_t m_buttons = 0;
char buf[512] = {0};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void filter_adc1(void);
void filter_adc2(void);
void set_pwm_outputs(void);
float map(float x, float in_min, float in_max, float out_min, float out_max);
float map_clamp(float x, float in_min, float in_max, float out_min, float out_max);
#ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint32_t prev_uart_tick = UART_LOOP_TIME;
uint32_t prev_btn_time = BTN_POLL_TIME;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C1_Init();
MX_TIM1_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_ADC1_Init();
MX_ADC2_Init();
MX_USART1_UART_Init();
MX_USB_Device_Init();
/* USER CODE BEGIN 2 */
// int len = snprintf(buf, 128, "Version: %s\r\n", VERSION_STR);
// CDC_Transmit_FS((uint8_t *)buf, len);
// Initialize EMA filters
for (uint32_t i = 0; i < NUM_SLIDERS; i++)
{
m_slider_filters[i].last_sample = 0;
m_slider_filters[i].coeff = SLIDER_COEFF;
}
// ADC setup
// Calibrate
HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED);
HAL_ADCEx_Calibration_Start(&hadc2, ADC_SINGLE_ENDED);
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)m_adc1, 4);
HAL_ADC_Start_DMA(&hadc2, (uint32_t *)m_adc2, 2);
// PWM Setup
htim1.Instance->CCR1 = 0;
htim1.Instance->CCR2 = 0;
htim1.Instance->CCR3 = 0;
htim2.Instance->CCR1 = 0;
htim2.Instance->CCR2 = 0;
htim2.Instance->CCR3 = 0;
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3);
HAL_TIM_Base_Start(&htim3);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if ((m_adc1_filtered_ready) == true && (m_adc2_filtered_ready == true))
{
// Map ADC value to PWM value
for (uint32_t i = 0; i < NUM_SLIDERS; i++)
{
m_sliders[i] = map_clamp(m_slider_filters[i].filtered_sample, 100.0f, 3900.0f, 0.0f, 100.0f);
}
// Channel 1 is master, Channels 2-6 are slaves
for (uint32_t j = 1; j < NUM_SLIDERS; j++)
{
m_sliders[j] = map_clamp(m_sliders[j], 0.0f, 100.0f, 0.0f, m_sliders[0]);
}
set_pwm_outputs();
m_adc1_filtered_ready = false;
m_adc2_filtered_ready = false;
}
2024-07-12 17:23:02 -05:00
// if ((HAL_GetTick() - prev_uart_tick) >= UART_LOOP_TIME)
// {
// prev_uart_tick = HAL_GetTick();
2024-07-12 17:23:02 -05:00
// int len = snprintf(buf, 512, "Master\tCh1\tCh2\tCh3\tCh4\t\r\n");
2024-07-12 17:23:02 -05:00
// len += snprintf((buf + len), (512 - len), "%03.1f\t%03.1f\t%03.1f\t%03.1f\t%03.1f\t\r\n",
// m_sliders[0], m_sliders[1], m_sliders[2], m_sliders[3], m_sliders[4]);
2024-07-12 11:29:29 -05:00
2024-07-12 17:23:02 -05:00
// len += snprintf((buf + len), (512 - len), "Version: %s\r\n", VERSION_STR);
2024-07-12 11:29:29 -05:00
2024-07-12 17:23:02 -05:00
// CDC_Transmit_FS((uint8_t *)buf, len);
// }
if ((HAL_GetTick() - prev_btn_time) >= BTN_POLL_TIME)
{
prev_btn_time = HAL_GetTick();
m_buttons |= (m_buttons & ~0x01) | HAL_GPIO_ReadPin(Btn_0_GPIO_Port, Btn_0_Pin);
m_buttons |= (m_buttons & ~0x02) | HAL_GPIO_ReadPin(Btn_1_GPIO_Port, Btn_1_Pin) << 1;
m_buttons |= (m_buttons & ~0x04) | HAL_GPIO_ReadPin(Btn_2_GPIO_Port, Btn_2_Pin) << 2;
m_buttons |= (m_buttons & ~0x08) | HAL_GPIO_ReadPin(Btn_3_GPIO_Port, Btn_3_Pin) << 3;
m_buttons |= (m_buttons & ~0x10) | HAL_GPIO_ReadPin(Btn_4_GPIO_Port, Btn_4_Pin) << 4;
m_buttons |= (m_buttons & ~0x20) | HAL_GPIO_ReadPin(Btn_5_GPIO_Port, Btn_5_Pin) << 5;
m_buttons |= (m_buttons & ~0x40) | HAL_GPIO_ReadPin(Btn_6_GPIO_Port, Btn_6_Pin) << 6;
m_buttons |= (m_buttons & ~0x80) | HAL_GPIO_ReadPin(Btn_7_GPIO_Port, Btn_7_Pin) << 7;
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48 | RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV4;
RCC_OscInitStruct.PLL.PLLN = 85;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV4;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
if (hadc->Instance == ADC1)
{
filter_adc1();
}
else if (hadc->Instance == ADC2)
{
filter_adc2();
}
}
/*
*
*/
void filter_adc1(void)
{
for (uint32_t i = 0; i < 4; i++)
{
// EMA
m_slider_filters[i].filtered_sample = (m_adc1[i] * m_slider_filters[i].coeff) + ((1 - m_slider_filters[i].coeff) * m_slider_filters[i].last_sample);
// Store current sample for next time
m_slider_filters[i].last_sample = m_adc1[i];
m_adc1_filtered_ready = true;
}
}
/*
*
*/
void filter_adc2(void)
{
for (uint32_t i = 4; i < NUM_SLIDERS; i++)
{
// EMA
m_slider_filters[i].filtered_sample = (m_adc2[i - 4] * m_slider_filters[i].coeff) + ((1 - m_slider_filters[i].coeff) * m_slider_filters[i].last_sample);
// Store current sample for next time
m_slider_filters[i].last_sample = m_adc2[i - 4];
m_adc2_filtered_ready = true;
}
}
/*
*
*/
void set_pwm_outputs(void)
{
2024-07-12 17:30:08 -05:00
float ch1 = map_clamp(m_sliders[1], 0.0f, 100.0f, 0, (MAX_PWM_VALUE * PWM_LIMIT));
float ch2 = map_clamp(m_sliders[2], 0.0f, 100.0f, 0, (MAX_PWM_VALUE * PWM_LIMIT));
float ch3 = map_clamp(m_sliders[3], 0.0f, 100.0f, 0, (MAX_PWM_VALUE * PWM_LIMIT));
float ch4 = map_clamp(m_sliders[4], 0.0f, 100.0f, 0, (MAX_PWM_VALUE * PWM_LIMIT));
htim1.Instance->CCR1 = (uint32_t)(ch1);
htim1.Instance->CCR2 = (uint32_t)(ch2);
htim1.Instance->CCR3 = (uint32_t)(ch3);
htim2.Instance->CCR1 = (uint32_t)(ch4);
// htim2.Instance->CCR2 = (uint32_t)(MAX_PWM_VALUE * m_sliders[5]);
// htim2.Instance->CCR3 = (uint32_t)(MAX_PWM_VALUE * m_sliders[5]);
}
/*
*
*/
float map(float x, float in_min, float in_max, float out_min, float out_max)
{
return ((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min);
}
/*
*
*/
float map_clamp(float x, float in_min, float in_max, float out_min, float out_max)
{
float y = (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
if (out_min > y)
y = out_min;
else if (out_max < y)
y = out_max;
return (y);
}
/**
* @brief Retargets the C library printf function to the USART.
* @param None
* @retval None
*/
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART1 and Loop until the end of transmission */
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */