Sliders_McGee/Drivers/STM32G4xx_HAL_Driver/Inc/stm32g4xx_ll_crs.h
Chris Trimble 09ca8ceb1f Initial commit.
Base level functionality complete.
Untested on hardware.
2024-06-06 22:01:17 -05:00

782 lines
24 KiB
C

/**
******************************************************************************
* @file stm32g4xx_ll_crs.h
* @author MCD Application Team
* @brief Header file of CRS LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32G4xx_LL_CRS_H
#define __STM32G4xx_LL_CRS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32g4xx.h"
/** @addtogroup STM32G4xx_LL_Driver
* @{
*/
#if defined(CRS)
/** @defgroup CRS_LL CRS
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Exported types ------------------------------------------------------------*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Constants CRS Exported Constants
* @{
*/
/** @defgroup CRS_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_CRS_ReadReg function
* @{
*/
#define LL_CRS_ISR_SYNCOKF CRS_ISR_SYNCOKF
#define LL_CRS_ISR_SYNCWARNF CRS_ISR_SYNCWARNF
#define LL_CRS_ISR_ERRF CRS_ISR_ERRF
#define LL_CRS_ISR_ESYNCF CRS_ISR_ESYNCF
#define LL_CRS_ISR_SYNCERR CRS_ISR_SYNCERR
#define LL_CRS_ISR_SYNCMISS CRS_ISR_SYNCMISS
#define LL_CRS_ISR_TRIMOVF CRS_ISR_TRIMOVF
/**
* @}
*/
/** @defgroup CRS_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_CRS_ReadReg and LL_CRS_WriteReg functions
* @{
*/
#define LL_CRS_CR_SYNCOKIE CRS_CR_SYNCOKIE
#define LL_CRS_CR_SYNCWARNIE CRS_CR_SYNCWARNIE
#define LL_CRS_CR_ERRIE CRS_CR_ERRIE
#define LL_CRS_CR_ESYNCIE CRS_CR_ESYNCIE
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_DIV Synchronization Signal Divider
* @{
*/
#define LL_CRS_SYNC_DIV_1 ((uint32_t)0x00U) /*!< Synchro Signal not divided (default) */
#define LL_CRS_SYNC_DIV_2 CRS_CFGR_SYNCDIV_0 /*!< Synchro Signal divided by 2 */
#define LL_CRS_SYNC_DIV_4 CRS_CFGR_SYNCDIV_1 /*!< Synchro Signal divided by 4 */
#define LL_CRS_SYNC_DIV_8 (CRS_CFGR_SYNCDIV_1 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 8 */
#define LL_CRS_SYNC_DIV_16 CRS_CFGR_SYNCDIV_2 /*!< Synchro Signal divided by 16 */
#define LL_CRS_SYNC_DIV_32 (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_0) /*!< Synchro Signal divided by 32 */
#define LL_CRS_SYNC_DIV_64 (CRS_CFGR_SYNCDIV_2 | CRS_CFGR_SYNCDIV_1) /*!< Synchro Signal divided by 64 */
#define LL_CRS_SYNC_DIV_128 CRS_CFGR_SYNCDIV /*!< Synchro Signal divided by 128 */
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_SOURCE Synchronization Signal Source
* @{
*/
#define LL_CRS_SYNC_SOURCE_GPIO ((uint32_t)0x00U) /*!< Synchro Signal source GPIO */
#define LL_CRS_SYNC_SOURCE_LSE CRS_CFGR_SYNCSRC_0 /*!< Synchro Signal source LSE */
#define LL_CRS_SYNC_SOURCE_USB CRS_CFGR_SYNCSRC_1 /*!< Synchro Signal source USB SOF (default)*/
/**
* @}
*/
/** @defgroup CRS_LL_EC_SYNC_POLARITY Synchronization Signal Polarity
* @{
*/
#define LL_CRS_SYNC_POLARITY_RISING ((uint32_t)0x00U) /*!< Synchro Active on rising edge (default) */
#define LL_CRS_SYNC_POLARITY_FALLING CRS_CFGR_SYNCPOL /*!< Synchro Active on falling edge */
/**
* @}
*/
/** @defgroup CRS_LL_EC_FREQERRORDIR Frequency Error Direction
* @{
*/
#define LL_CRS_FREQ_ERROR_DIR_UP ((uint32_t)0x00U) /*!< Upcounting direction, the actual frequency is above the target */
#define LL_CRS_FREQ_ERROR_DIR_DOWN ((uint32_t)CRS_ISR_FEDIR) /*!< Downcounting direction, the actual frequency is below the target */
/**
* @}
*/
/** @defgroup CRS_LL_EC_DEFAULTVALUES Default Values
* @{
*/
/**
* @brief Reset value of the RELOAD field
* @note The reset value of the RELOAD field corresponds to a target frequency of 48 MHz
* and a synchronization signal frequency of 1 kHz (SOF signal from USB)
*/
#define LL_CRS_RELOADVALUE_DEFAULT ((uint32_t)0xBB7FU)
/**
* @brief Reset value of Frequency error limit.
*/
#define LL_CRS_ERRORLIMIT_DEFAULT ((uint32_t)0x22U)
/**
* @brief Reset value of the HSI48 Calibration field
* @note The default value is 64, which corresponds to the middle of the trimming interval.
* The trimming step is specified in the product datasheet.
* A higher TRIM value corresponds to a higher output frequency
*/
#define LL_CRS_HSI48CALIBRATION_DEFAULT ((uint32_t)0x40U)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Macros CRS Exported Macros
* @{
*/
/** @defgroup CRS_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in CRS register
* @param __INSTANCE__ CRS Instance
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_CRS_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__))
/**
* @brief Read a value in CRS register
* @param __INSTANCE__ CRS Instance
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_CRS_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__)
/**
* @}
*/
/** @defgroup CRS_LL_EM_Exported_Macros_Calculate_Reload Exported_Macros_Calculate_Reload
* @{
*/
/**
* @brief Macro to calculate reload value to be set in CRS register according to target and sync frequencies
* @note The RELOAD value should be selected according to the ratio between
* the target frequency and the frequency of the synchronization source after
* prescaling. It is then decreased by one in order to reach the expected
* synchronization on the zero value. The formula is the following:
* RELOAD = (fTARGET / fSYNC) -1
* @param __FTARGET__ Target frequency (value in Hz)
* @param __FSYNC__ Synchronization signal frequency (value in Hz)
* @retval Reload value (in Hz)
*/
#define __LL_CRS_CALC_CALCULATE_RELOADVALUE(__FTARGET__, __FSYNC__) (((__FTARGET__) / (__FSYNC__)) - 1U)
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CRS_LL_Exported_Functions CRS Exported Functions
* @{
*/
/** @defgroup CRS_LL_EF_Configuration Configuration
* @{
*/
/**
* @brief Enable Frequency error counter
* @note When this bit is set, the CRS_CFGR register is write-protected and cannot be modified
* @rmtoll CR CEN LL_CRS_EnableFreqErrorCounter
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableFreqErrorCounter(void)
{
SET_BIT(CRS->CR, CRS_CR_CEN);
}
/**
* @brief Disable Frequency error counter
* @rmtoll CR CEN LL_CRS_DisableFreqErrorCounter
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableFreqErrorCounter(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_CEN);
}
/**
* @brief Check if Frequency error counter is enabled or not
* @rmtoll CR CEN LL_CRS_IsEnabledFreqErrorCounter
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledFreqErrorCounter(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_CEN) == (CRS_CR_CEN)) ? 1UL : 0UL);
}
/**
* @brief Enable Automatic trimming counter
* @rmtoll CR AUTOTRIMEN LL_CRS_EnableAutoTrimming
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableAutoTrimming(void)
{
SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN);
}
/**
* @brief Disable Automatic trimming counter
* @rmtoll CR AUTOTRIMEN LL_CRS_DisableAutoTrimming
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableAutoTrimming(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_AUTOTRIMEN);
}
/**
* @brief Check if Automatic trimming is enabled or not
* @rmtoll CR AUTOTRIMEN LL_CRS_IsEnabledAutoTrimming
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledAutoTrimming(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_AUTOTRIMEN) == (CRS_CR_AUTOTRIMEN)) ? 1UL : 0UL);
}
/**
* @brief Set HSI48 oscillator smooth trimming
* @note When the AUTOTRIMEN bit is set, this field is controlled by hardware and is read-only
* @rmtoll CR TRIM LL_CRS_SetHSI48SmoothTrimming
* @param Value a number between Min_Data = 0 and Max_Data = 63
* @note Default value can be set thanks to @ref LL_CRS_HSI48CALIBRATION_DEFAULT
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetHSI48SmoothTrimming(uint32_t Value)
{
MODIFY_REG(CRS->CR, CRS_CR_TRIM, Value << CRS_CR_TRIM_Pos);
}
/**
* @brief Get HSI48 oscillator smooth trimming
* @rmtoll CR TRIM LL_CRS_GetHSI48SmoothTrimming
* @retval a number between Min_Data = 0 and Max_Data = 63
*/
__STATIC_INLINE uint32_t LL_CRS_GetHSI48SmoothTrimming(void)
{
return (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_Pos);
}
/**
* @brief Set counter reload value
* @rmtoll CFGR RELOAD LL_CRS_SetReloadCounter
* @param Value a number between Min_Data = 0 and Max_Data = 0xFFFF
* @note Default value can be set thanks to @ref LL_CRS_RELOADVALUE_DEFAULT
* Otherwise it can be calculated in using macro @ref __LL_CRS_CALC_CALCULATE_RELOADVALUE (_FTARGET_, _FSYNC_)
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetReloadCounter(uint32_t Value)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_RELOAD, Value);
}
/**
* @brief Get counter reload value
* @rmtoll CFGR RELOAD LL_CRS_GetReloadCounter
* @retval a number between Min_Data = 0 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_CRS_GetReloadCounter(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
}
/**
* @brief Set frequency error limit
* @rmtoll CFGR FELIM LL_CRS_SetFreqErrorLimit
* @param Value a number between Min_Data = 0 and Max_Data = 255
* @note Default value can be set thanks to @ref LL_CRS_ERRORLIMIT_DEFAULT
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetFreqErrorLimit(uint32_t Value)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_FELIM, Value << CRS_CFGR_FELIM_Pos);
}
/**
* @brief Get frequency error limit
* @rmtoll CFGR FELIM LL_CRS_GetFreqErrorLimit
* @retval A number between Min_Data = 0 and Max_Data = 255
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorLimit(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_FELIM) >> CRS_CFGR_FELIM_Pos);
}
/**
* @brief Set division factor for SYNC signal
* @rmtoll CFGR SYNCDIV LL_CRS_SetSyncDivider
* @param Divider This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1
* @arg @ref LL_CRS_SYNC_DIV_2
* @arg @ref LL_CRS_SYNC_DIV_4
* @arg @ref LL_CRS_SYNC_DIV_8
* @arg @ref LL_CRS_SYNC_DIV_16
* @arg @ref LL_CRS_SYNC_DIV_32
* @arg @ref LL_CRS_SYNC_DIV_64
* @arg @ref LL_CRS_SYNC_DIV_128
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncDivider(uint32_t Divider)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCDIV, Divider);
}
/**
* @brief Get division factor for SYNC signal
* @rmtoll CFGR SYNCDIV LL_CRS_GetSyncDivider
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1
* @arg @ref LL_CRS_SYNC_DIV_2
* @arg @ref LL_CRS_SYNC_DIV_4
* @arg @ref LL_CRS_SYNC_DIV_8
* @arg @ref LL_CRS_SYNC_DIV_16
* @arg @ref LL_CRS_SYNC_DIV_32
* @arg @ref LL_CRS_SYNC_DIV_64
* @arg @ref LL_CRS_SYNC_DIV_128
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncDivider(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCDIV));
}
/**
* @brief Set SYNC signal source
* @rmtoll CFGR SYNCSRC LL_CRS_SetSyncSignalSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO
* @arg @ref LL_CRS_SYNC_SOURCE_LSE
* @arg @ref LL_CRS_SYNC_SOURCE_USB
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncSignalSource(uint32_t Source)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCSRC, Source);
}
/**
* @brief Get SYNC signal source
* @rmtoll CFGR SYNCSRC LL_CRS_GetSyncSignalSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO
* @arg @ref LL_CRS_SYNC_SOURCE_LSE
* @arg @ref LL_CRS_SYNC_SOURCE_USB
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncSignalSource(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCSRC));
}
/**
* @brief Set input polarity for the SYNC signal source
* @rmtoll CFGR SYNCPOL LL_CRS_SetSyncPolarity
* @param Polarity This parameter can be one of the following values:
* @arg @ref LL_CRS_SYNC_POLARITY_RISING
* @arg @ref LL_CRS_SYNC_POLARITY_FALLING
* @retval None
*/
__STATIC_INLINE void LL_CRS_SetSyncPolarity(uint32_t Polarity)
{
MODIFY_REG(CRS->CFGR, CRS_CFGR_SYNCPOL, Polarity);
}
/**
* @brief Get input polarity for the SYNC signal source
* @rmtoll CFGR SYNCPOL LL_CRS_GetSyncPolarity
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_SYNC_POLARITY_RISING
* @arg @ref LL_CRS_SYNC_POLARITY_FALLING
*/
__STATIC_INLINE uint32_t LL_CRS_GetSyncPolarity(void)
{
return (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_SYNCPOL));
}
/**
* @brief Configure CRS for the synchronization
* @rmtoll CR TRIM LL_CRS_ConfigSynchronization\n
* CFGR RELOAD LL_CRS_ConfigSynchronization\n
* CFGR FELIM LL_CRS_ConfigSynchronization\n
* CFGR SYNCDIV LL_CRS_ConfigSynchronization\n
* CFGR SYNCSRC LL_CRS_ConfigSynchronization\n
* CFGR SYNCPOL LL_CRS_ConfigSynchronization
* @param HSI48CalibrationValue a number between Min_Data = 0 and Max_Data = 63
* @param ErrorLimitValue a number between Min_Data = 0 and Max_Data = 0xFFFF
* @param ReloadValue a number between Min_Data = 0 and Max_Data = 255
* @param Settings This parameter can be a combination of the following values:
* @arg @ref LL_CRS_SYNC_DIV_1 or @ref LL_CRS_SYNC_DIV_2 or @ref LL_CRS_SYNC_DIV_4 or @ref LL_CRS_SYNC_DIV_8
* or @ref LL_CRS_SYNC_DIV_16 or @ref LL_CRS_SYNC_DIV_32 or @ref LL_CRS_SYNC_DIV_64 or @ref LL_CRS_SYNC_DIV_128
* @arg @ref LL_CRS_SYNC_SOURCE_GPIO or @ref LL_CRS_SYNC_SOURCE_LSE or @ref LL_CRS_SYNC_SOURCE_USB
* @arg @ref LL_CRS_SYNC_POLARITY_RISING or @ref LL_CRS_SYNC_POLARITY_FALLING
* @retval None
*/
__STATIC_INLINE void LL_CRS_ConfigSynchronization(uint32_t HSI48CalibrationValue, uint32_t ErrorLimitValue,
uint32_t ReloadValue, uint32_t Settings)
{
MODIFY_REG(CRS->CR, CRS_CR_TRIM, HSI48CalibrationValue);
MODIFY_REG(CRS->CFGR,
CRS_CFGR_RELOAD | CRS_CFGR_FELIM | CRS_CFGR_SYNCDIV | CRS_CFGR_SYNCSRC | CRS_CFGR_SYNCPOL,
ReloadValue | (ErrorLimitValue << CRS_CFGR_FELIM_Pos) | Settings);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_CRS_Management CRS_Management
* @{
*/
/**
* @brief Generate software SYNC event
* @rmtoll CR SWSYNC LL_CRS_GenerateEvent_SWSYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_GenerateEvent_SWSYNC(void)
{
SET_BIT(CRS->CR, CRS_CR_SWSYNC);
}
/**
* @brief Get the frequency error direction latched in the time of the last
* SYNC event
* @rmtoll ISR FEDIR LL_CRS_GetFreqErrorDirection
* @retval Returned value can be one of the following values:
* @arg @ref LL_CRS_FREQ_ERROR_DIR_UP
* @arg @ref LL_CRS_FREQ_ERROR_DIR_DOWN
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorDirection(void)
{
return (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
}
/**
* @brief Get the frequency error counter value latched in the time of the last SYNC event
* @rmtoll ISR FECAP LL_CRS_GetFreqErrorCapture
* @retval A number between Min_Data = 0x0000 and Max_Data = 0xFFFF
*/
__STATIC_INLINE uint32_t LL_CRS_GetFreqErrorCapture(void)
{
return (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_Pos);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_FLAG_Management FLAG_Management
* @{
*/
/**
* @brief Check if SYNC event OK signal occurred or not
* @rmtoll ISR SYNCOKF LL_CRS_IsActiveFlag_SYNCOK
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCOK(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCOKF) == (CRS_ISR_SYNCOKF)) ? 1UL : 0UL);
}
/**
* @brief Check if SYNC warning signal occurred or not
* @rmtoll ISR SYNCWARNF LL_CRS_IsActiveFlag_SYNCWARN
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCWARN(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCWARNF) == (CRS_ISR_SYNCWARNF)) ? 1UL : 0UL);
}
/**
* @brief Check if Synchronization or trimming error signal occurred or not
* @rmtoll ISR ERRF LL_CRS_IsActiveFlag_ERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_ERR(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_ERRF) == (CRS_ISR_ERRF)) ? 1UL : 0UL);
}
/**
* @brief Check if Expected SYNC signal occurred or not
* @rmtoll ISR ESYNCF LL_CRS_IsActiveFlag_ESYNC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_ESYNC(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_ESYNCF) == (CRS_ISR_ESYNCF)) ? 1UL : 0UL);
}
/**
* @brief Check if SYNC error signal occurred or not
* @rmtoll ISR SYNCERR LL_CRS_IsActiveFlag_SYNCERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCERR(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCERR) == (CRS_ISR_SYNCERR)) ? 1UL : 0UL);
}
/**
* @brief Check if SYNC missed error signal occurred or not
* @rmtoll ISR SYNCMISS LL_CRS_IsActiveFlag_SYNCMISS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_SYNCMISS(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_SYNCMISS) == (CRS_ISR_SYNCMISS)) ? 1UL : 0UL);
}
/**
* @brief Check if Trimming overflow or underflow occurred or not
* @rmtoll ISR TRIMOVF LL_CRS_IsActiveFlag_TRIMOVF
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsActiveFlag_TRIMOVF(void)
{
return ((READ_BIT(CRS->ISR, CRS_ISR_TRIMOVF) == (CRS_ISR_TRIMOVF)) ? 1UL : 0UL);
}
/**
* @brief Clear the SYNC event OK flag
* @rmtoll ICR SYNCOKC LL_CRS_ClearFlag_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_SYNCOK(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
}
/**
* @brief Clear the SYNC warning flag
* @rmtoll ICR SYNCWARNC LL_CRS_ClearFlag_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_SYNCWARN(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
}
/**
* @brief Clear TRIMOVF, SYNCMISS and SYNCERR bits and consequently also
* the ERR flag
* @rmtoll ICR ERRC LL_CRS_ClearFlag_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_ERR(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
}
/**
* @brief Clear Expected SYNC flag
* @rmtoll ICR ESYNCC LL_CRS_ClearFlag_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_ClearFlag_ESYNC(void)
{
WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
}
/**
* @}
*/
/** @defgroup CRS_LL_EF_IT_Management IT_Management
* @{
*/
/**
* @brief Enable SYNC event OK interrupt
* @rmtoll CR SYNCOKIE LL_CRS_EnableIT_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_SYNCOK(void)
{
SET_BIT(CRS->CR, CRS_CR_SYNCOKIE);
}
/**
* @brief Disable SYNC event OK interrupt
* @rmtoll CR SYNCOKIE LL_CRS_DisableIT_SYNCOK
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_SYNCOK(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_SYNCOKIE);
}
/**
* @brief Check if SYNC event OK interrupt is enabled or not
* @rmtoll CR SYNCOKIE LL_CRS_IsEnabledIT_SYNCOK
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_SYNCOK(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_SYNCOKIE) == (CRS_CR_SYNCOKIE)) ? 1UL : 0UL);
}
/**
* @brief Enable SYNC warning interrupt
* @rmtoll CR SYNCWARNIE LL_CRS_EnableIT_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_SYNCWARN(void)
{
SET_BIT(CRS->CR, CRS_CR_SYNCWARNIE);
}
/**
* @brief Disable SYNC warning interrupt
* @rmtoll CR SYNCWARNIE LL_CRS_DisableIT_SYNCWARN
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_SYNCWARN(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_SYNCWARNIE);
}
/**
* @brief Check if SYNC warning interrupt is enabled or not
* @rmtoll CR SYNCWARNIE LL_CRS_IsEnabledIT_SYNCWARN
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_SYNCWARN(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_SYNCWARNIE) == (CRS_CR_SYNCWARNIE)) ? 1UL : 0UL);
}
/**
* @brief Enable Synchronization or trimming error interrupt
* @rmtoll CR ERRIE LL_CRS_EnableIT_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_ERR(void)
{
SET_BIT(CRS->CR, CRS_CR_ERRIE);
}
/**
* @brief Disable Synchronization or trimming error interrupt
* @rmtoll CR ERRIE LL_CRS_DisableIT_ERR
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_ERR(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_ERRIE);
}
/**
* @brief Check if Synchronization or trimming error interrupt is enabled or not
* @rmtoll CR ERRIE LL_CRS_IsEnabledIT_ERR
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_ERR(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_ERRIE) == (CRS_CR_ERRIE)) ? 1UL : 0UL);
}
/**
* @brief Enable Expected SYNC interrupt
* @rmtoll CR ESYNCIE LL_CRS_EnableIT_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_EnableIT_ESYNC(void)
{
SET_BIT(CRS->CR, CRS_CR_ESYNCIE);
}
/**
* @brief Disable Expected SYNC interrupt
* @rmtoll CR ESYNCIE LL_CRS_DisableIT_ESYNC
* @retval None
*/
__STATIC_INLINE void LL_CRS_DisableIT_ESYNC(void)
{
CLEAR_BIT(CRS->CR, CRS_CR_ESYNCIE);
}
/**
* @brief Check if Expected SYNC interrupt is enabled or not
* @rmtoll CR ESYNCIE LL_CRS_IsEnabledIT_ESYNC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_CRS_IsEnabledIT_ESYNC(void)
{
return ((READ_BIT(CRS->CR, CRS_CR_ESYNCIE) == (CRS_CR_ESYNCIE)) ? 1UL : 0UL);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup CRS_LL_EF_Init Initialization and de-initialization functions
* @{
*/
ErrorStatus LL_CRS_DeInit(void);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(CRS) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32G4xx_LL_CRS_H */